skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zelenchuk, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 30, 2026
  2. Free, publicly-accessible full text available March 30, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. In this study, a metamaterial-based LTCC compressed Luneburg lens was designed, manufactured and measured. The lens was designed at 60 GHz to utilize the unlicensed mm-wave spectrum available for short-range high-capacity wireless communication networks. The transformation optics method was applied to ensure the compression of the Luneburg lens antenna and thus maintain a low-profile structure. The two different types of unit cells for low and high permittivity regions were considered. The parametric study of the effect of compression on lens performance was presented. The antenna is implemented with a standard high-permittivity LTCC process, and details of the manufacturing process for the metamaterial lens are discussed. The low-profile lens is thinner than 2 mm and measures 19 mm in diameter. A size reduction of 63.6% in comparison with a spherical lens was achieved. The near-field to far-field mm-wave measurement technique is presented, and the measurement results show a peak antenna gain of 16 dBi at 60 GHz and a beam-scanning capacity with 1 dB scan loss within a 50° field of view. 
    more » « less